METODO ANALITICO SOBRE LOS ELECTRODOS

1. ¿Qué es un electrodo de soldadura?

Un electrodo de soldadura es un consumible que conduce electricidad y aporta o no material al baño de fusión, facilitando la unión de dos piezas metálicas. Los electrodos se colocan en el porta-electrodo y su recubrimiento, cuando existe recubrimiento, protege el arco y la soldadura de la contaminación.

2. Clasificación general:

A) Electrodos consumibles (aportan metal).

1. Revestidos (SMAW/MMA).

El tipo más usado en soldadura manual por arco, tienen núcleo metálico y recubrimiento que genera gas y escoria protectora.

Según revestimiento:

- Celulósicos: alto contenido de celulosa; penetración profunda, buen rendimiento en vertical.
- Rutílicos (óxido de titanio): arco suave y escoria fácil de retirar, uso general.
- Minerales: con óxido de hierro/manganeso, alta velocidad de depósito.
- Bajo hidrógeno (básicos): libre de humedad, muy altos estándares mecánicos, resistentes a fisuras y bajas temperaturas.
- Hierro en polvo: mayor deposición, buen uso en semiautomático.

Tipo	Ejemplo	Penetración	Uso típico	Ventaja clave
Celulósico	E-6010/11	Muy alta	Pase de raíz en tubería, vertical, uso general.	Escoria fluida, alto rendimiento
Rutílico	E-6012/13	Media	Chapas finas, uso general	Arco suave, cordón estético, fácil limpieza
Mineral	E-6020	Media-alta	Posición plana/filete	Depósito rápido, escoria ligera
Bajo hidrógeno	E-7018	Media	Estructuras, calderería, frío	Alta calidad mecánica, baja humedad
Hierro en polvo	E-7024	Media	Producción en plano/filete	Alta deposición, producto limpio

2. Alambre continuo (MIG/MAG).

- Sólido: núcleo metálico, requiere gas protector (Argón/CO2), limpio y económico
- Tubular (flux-cored): interior con fundente, puede ser auto protector o usar gas, buena penetración.
- Metal-cored: núcleo metálico con partículas dentro, alta deposición y mínima salpicadura.

Tipo	Ejemplo	Gas protector	Ventajas clave
Sólido	ER70S-6	CO ₂ o mezcla Argón	Limpio, económico, ideal para chapas, muy eficiente
Flux-cored tubular	1. E71T-11 2. E71T-8	 Autoprotección (no usa gas) CO₂ / Argón-CO₂ 	 Portátil, alta deposición, bueno en campo Escoria fácil, para estructuras y todas posiciones
Metal-cored	 E70C-6M E80C-B9 	 Argón/CO₂ Argón/CO₂ 	 Altísima deposición, baja salpicadura, alto rendimiento Para material de alta resistencia, excelente depósito

B) *Electrodos no consumibles

Se usan en soldadura TIG: acero inoxidable, aluminio, cobre, etc. El electrodo es de tungsteno (no aporta metal), y se usa gas inerte.

Color del extremo	Composición del electrodo	Aplicaciones recomendadas	Corriente	Comentarios
Verde	Tungsteno puro (99.5%)	Aluminio, magnesio	AC	Buena estabilidad del arco en corriente alterna; no recomendado para corriente continua.
Rojo	2% Torio	Acero inoxidable, aleaciones de níquel, titanio	CC	Excelente encendido del arco; contiene material radiactivo, manejar con precaución.
Oro/Dorado	1.5% Lantano	Acero, acero inoxidable, níquel, titanio, cobre	AC/DC	Buena estabilidad del arco; alternativa no radiactiva al torio.
Negro	1% Lantano	Acero, acero inoxidable, níquel, titanio, cobre	AC/DC	Similar al oro, con propiedades de encendido y estabilidad del arco.
Gris	2% Cerio	Acero al carbono, inoxidable, titanio, cobre, magnesio	CC	Buen encendido del arco; vida útil más corta que otros electrodos.
Púrpura	Mezcla de tierras raras	Acero, acero inoxidable, aluminio, cobre, titanio	AC/DC	Excelente encendido del arco; baja emisión de calor; no radiactivo.

METODO SINTETICO SOBRE EL ELETRODO E6011

1. Características particulares del electrodo E6011

- 1) Composición del revestimiento: El electrodo E6011 presenta un revestimiento celulósico con alto contenido de potasio, lo que le confiere una excelente capacidad de inicio de arco y estabilidad.
- 2) **Polaridad de uso**: Es versátil en cuanto a la polaridad, siendo adecuado tanto para corriente alterna (CA) como para corriente continua con electrodo positivo (DCEP).
- 3) **Aplicaciones específicas**: Ideal para soldaduras en acero al carbono, especialmente en situaciones donde se requiere penetración profunda y la presencia de óxido o suciedad en las piezas.

2. Propiedades mecánicas y químicas

- 1) **Resistencia a la tracción**: Mínimo de 60.000 psi (aproximadamente 430 MPa).
- 2) **Resistencia al rendimiento**: Mínimo de 48.000 psi (aproximadamente 330 MPa).
- 3) Alargamiento: Mínimo del 22%.
- 4) Composición química del metal depositado:
 - Carbono (C): ≤0.20%
 - Manganeso (Mn): 0.30–0.60%
 - Silicio (Si): ≤0.30%
 - Azufre (S): $\leq 0.035\%$
 - Fósforo (P): ≤0.040%

3. Clasificación según la norma AWS

- 1) **AWS A5.1**: Esta es la especificación que define los electrodos para soldadura con arco metálico protegido (SMAW) de acero al carbono.
- 2) **E6011**: La clasificación del electrodo según AWS A5.1 se desglosa de la siguiente manera:
 - E: Electrodo para soldadura con arco metálico protegido.
 - **60**: Resistencia mínima a la tracción de 60.000 psi.
 - 1: Adecuado para todas las posiciones de soldadura.
 - 1: Tipo de revestimiento con características específicas según la norma.

4. Conclusión

El electrodo E6011 es una herramienta versátil y eficaz para la soldadura de acero al carbono, especialmente en situaciones que requieren penetración profunda y donde las condiciones del material base pueden no ser ideales. Su capacidad para operar con diferentes polaridades y su rendimiento en diversas posiciones lo hacen adecuado para una amplia gama de aplicaciones industriales.

PARTICIPANTES:

- Alonzo Machuca Jakelin
- Benites Yi Luis Santos
- Carlos Herrera Jesús Félix
- Hinostroza Maximiliano Pablo David
- Ojanama Tang Akbar Matias
- Sorjano Nateros Kennedy Christian